Nom et prénom :

Activité réalisée avec :

Date :

Consignes (à lire intégralement, ainsi que le protocole, avant de commencer) :

Veuillez réaliser l'activité et le rapport. Respectez les règles habituelles quant à la présentation et à l'orthographe, notamment : en-tête rempli, pas de crayon (sauf pour les dessins) ni d'effaceur (erreurs éventuelles à biffer proprement), soin de la langue française, protocole/graphique(s)/données à rendre avec le rapport, précision dans les dessins et les résultats (nombre pertinent de chiffres significatifs).

PROJECTILE

Le but de cette activité est d'étudier le mouvement d'une balle de golf qui décolle <u>horizontalement</u> du bord d'une table et chute au sol, comme montré dans le schéma. On fait l'hypothèse que les forces de frottement sont négligeables.

I. Prévisions

- i) Quels types de mouvements s'attend-on dans les directions verticales et horizontales du jet de la balle (cf. cours) ?
- ii) Quels sont les facteurs qui déterminent le temps de vol de la bille ?
- iii) Quels sont les facteurs qui déterminent la **portée** de la trajectoire de la balle? (le déplacement horizontal jusqu'au point de chute).

II. Prise des mesures avec l'iPad

- a) Mesurer la **hauteur** h de la table au-dessus du sol.
- b) Faire quelques essais de jet avec la balle. On peut se servir de la rampe pour donner différentes vitesses initiales horizontales v_0 à la balle.
- c) Mettre en marche le iPad (mot de passe: 0987).

- d) Appeler le programme « Video Physics » (Icône: 🍊).
- e) Débuter une nouvelle Expérience (+) et sélectionner « Faire un film ».
- f) Lâcher la balle depuis une position donnée sur la rampe et débuter le film. Arrêter de filmer immédiatement après l'impact de la balle au sol. Ensuite appuyer sur l'option « *Utiliser* ».

<u>ATTENTION</u>: Tenir le iPad de manière stable et immobile, horizontale et face ou mouvement. Se positionner de sorte que le mouvement de la balle soit <u>filmé de gauche à droite</u> (cf. image ci dessous).

g) Cliquer en haut à gauche sur « *Expériences* » et enregistrer le nouveau film en cliquant sur « i » (= informations) puis en donnant <u>un nom explicite</u> comme: « Projectile Elève X »

III. Création des graphiques sur iPad

Le film enregistré peut-être visualisé au ralenti et à répétition. Le but ici est d'analyser la trajectoire de la balle depuis son départ de la table jusqu'à son impact au sol.

- a) Faire glisser le doigt sur le curseur afin de sélectionner l'image de la balle au moment de son décollage.
- b) Placer la cible précisément sur l'image de la balle au décollage (régler sa taille, ni trop grande ni trop petite), puis appuyer sur «*Tracer*». La cible doit suivre automatiquement la balle jusqu'à son impact au dernier moment avant son impact au sol.
- c) Ne garder que les points de la trajectoire <u>dès l'envol avant</u> <u>l'impact au sol</u> (en *chute libre*), les autres points pouvant être supprimés en les sélectionnant (ils deviennent alors bleus) et en cliquant « *Supprimer* ».
- d) Définir <u>le repère</u> ayant comme origine la position de la balle au bord de la table et ayant l'axe des *x* sur la trajectoire horizontale avant la chute, comme montré dans l'image.
- e) Définir <u>l'échelle</u>, en utilisant par exemple la hauteur de la table, puis visualiser les graphiques de x(t), y(t) et $v_y(t)$ via l'icône |x|'.
- f) Pour visualiser les données et travailler avec les graphiques:
 - o cliquer sur l'icône [□],
 - o puis sur « Fichier Données » + « Ouvrir dans... »,
 - choisir l'application *Graphical Analysis* (Icône : △)
 - L'application *Graphical* visualise les graphiques du mouvement. En cliquant sur les noms des paramètres observés sur l'axe vertical, les différents graphiques

peuvent être sélectionnés ou non. En cliquant sur l'icône en bas à gauche ($\not\models$) il est possible de choisir le format des points (« *Options graphe* ») ou d'ajouter une courbe de tendance.

IV. Analyse des résultats

Le but ici est d'analyser la trajectoire de la balle depuis son départ de la table jusqu'à son impact au sol.

i) Mouvement le long des axes

- a) Quel type de courbe suit mieux les données des graphiques de x(t), de y(t) de $v_x(t)$ et de $v_y(t)$ (plateau, droite, parabole, autre...)? *Justifier*.
- b) Cliquer sur l'icône en bas à gauche $\downarrow de t$ et choisir « *Appliquer une régression* » pour les courbes* de x(t), de y(t) de $v_y(t)$ (il n'est pas nécessaire d'interpoler le graphique de $v_x(t)$). Choisir la courbe cohérente avec la réponse donnée au point précédent.

ii) Durée de vol et portée

Répéter la prise des mesure (étapes II et III) pour au moins 2 autres vitesses horizontales initiales $v_0 = v_{0x}$, et déterminer à chaque fois

- la durée de vol $t_{final} = t$
- \circ la portée $x_{final} = d$
- c) Remplir le tableau suivant (pas besoin de faires les graphiques).

Mesure [unité]	1	2	3	(4)	(5)
$v_0 = v_{0x}$ []					
$d = x_{sol} - x_0 [$					
t []					
d/v_0 []					

d) En comparant les différentes mesures de *t* ainsi que les rapports $\frac{d}{v_0}$, que remarquez

vous?

^{* &}lt;u>Important</u>: envoyez les graphiques terminés et le tableau des données par email à votre adresse, afin de pouvoir les analyser d'avantage au moment d'écrire le rapport de laboratoire.

- e) Calculer la moyenne arithmétique t_{obs} de la durée de vol entre les différentes mesures.
- f) Déterminer par un calcul théorique la durée de vol t_{th} d'un objet que l'on laisserait tomber au sol en chute libre verticale depuis une hauteur h.
- g) Comparer les résultats des deux point précédents.

iii) Graphique de la portée en fonction de v_0

- h) À partir des mesures de (v_0, d) , dessiner sur une feuille le graphique de d en fonction v_0 .
- i) Que vaut *d* si $v_0 = 0$ m/s ? Ajouter ce couple de données au graphique.
- j) Ajouter à la main la droite de régression pour les données du graphique moyennant une fonction du type $v_0 = \mathbf{m} \cdot d + \mathbf{n}$. Ecrire l'équation de cette droite.
- k) Quelle signification physique peut-on attribuer à la pente m de cette droite ?

V. Conclusions

- Revenir sur les hypothèses de départ et les confronter aux résultats de mesure et d'analyse.
- Qu'avez-vous appris grâce à vos mesures et à votre analyse ?